Category: Maps

How to create a map in GeoCommons

GeoCommons (GC) is like Google My Maps but more powerful. Read my introduction to GC.

Tips before starting

  • With GC, I’m still figuring out what I must decide before I choose to add or amend something and what I can edit after I’ve made a change.
  • You cannot edit the data table directly.
  • You CAN replace data – click “reupload” – but the columns must match between original and replacement data.
  • Click Save often when making the map. You never know when Adobe Flash is going to quit on you.

One of the busiest locations in Chicago, for people walking, or riding buses and trains. Also a lot of taxi traffic and medium bike traffic. At Adams Street and Riverside Plaza (er, the Chicago River).

Tutorial

  1. Prepare your data.”We support Spreadsheets (as CSVs), Shapefiles, KML, RSS, ATOM and GeoRSS. We also support WMS and Tile services!” GeoCommons has instructions on how to prepare your spreadsheets for geocoding (if not already geocoded; GC will also work with predefined XY coordinates or street addresses). Ensure fields holding numbers have their type set as numeric in the GIS or spreadsheet program or you may run into roadblocks later on when trying to analyze these fields.
  2. If uploading a shapefile, GC requires the SHX and DBF files as well. The PRJ file will also help GC know how to reproject your data on the fly. GC base layer maps are projected in WGS84, just like Google Maps. Without the PRJ file, your data may not show. [Can the user set projection?]
  3. Upload data.
  4. You need to turn your newly uploaded data from a “pending dataset” to a completed dataset. In this process you will tell GC a little more about your data, including which columns hold the XY coordinates (even though it guesses this). you can also change the attribute names and describe the content of those attributes (you can also change this later).
  5. So click “Next Step” to start this process.
  6. In the “Review Your Geodata” step, you may see that GC has found some additional columns in your dataset. I’m not sure why this is. Delete these columns by selecting the header and clicking Delete Column. Then click Save Changes. You can select multiple columns at a time by holding the Command (Mac) or Control (Windows) keys.
  7. Add metadata; edit attribute names and add descriptions.
  8. You’re done. GC will present you a page with statistics and options to download your data in different formats.
  9. If you want to make a map with more data, follow the process again starting at Step 1. If not, continue.
  10. Make a map! Click “Map Data” or the “Make a Map” button in toolbar.
  11. A map of the world will load. When GC has finished loading your “new layer,” the map will zoom in.
  12. For the pedestrian map, I want to symbolize the data with a single color but changing the size of the circle based how many people were counted there (your data must have this attribute in numeric form – if it doesn’t you may have to reupload your data). Click “Add Data” and then in the Map Brewer box that appears by:
    1. Click on Visual Theme. Click next.
    2. Select the NUMERIC attribute. In the pedestrian data, this is “count.”
    3. Then select whether or not you want colors or sizes. You can not change this later. You would just delete the layer and add the layer again (using your already uploaded dataset).
    4. Select what type of classification you want. This is entirely up to you and how you want the map to look and based on what data you have. You can change this later.
    5. Choose your shape and color.
  13. Add more data by clicking Add Data button. I think my map would be more useful and interesting if it also showed where the train stations are, a major destination category for people who walk downtown on weekdays. I will symbolize by a solid color. Instead of visual theme, which I chose for the ped counts, I will just choose Points, Lines & Areas. At this time, GC doesn’t allow custom icons.
  14. Re-order layers by dragging them up and down in the layers box. Click on the boxy “handle” to the left of the layer.
  15. Change the layer names by single clicking on the layer name. Press Enter when you’re done.
  16. Change the map name by singe click on it. Press Enter when you’re done.

After creating my pedestrian map, I had some suggestions for GeoCommons, the people who collected the pedestrian count data, and my own map.

  • GeoCommons should add a map preview image for better sharing on Facebook and other websites that look for this.
  • GeoCommons should allow maps to be private after creation – I think after you click save, they are added to a gallery (I could be wrong).
  • The data collectors should add more locations, particularly around Union Station and the two Clinton CTA stations (also between CTA and Metra stations).
  • The data collectors should add “date collected” to the data table
  • The data collectors should extend survey hours to better match commuting patterns. A majority of the collections end at 5:45 PM while Metra’s rush hour ends just before 7 PM (this is when train departure frequency drops).
  • I should add ridership data to the train stations so we can see which CTA and Metra stations are most used.

You asked for it, you got it – Chicago bike count data

Note: This post doesn’t have any analysis of the data or report, nor do I make any observations. I think it’s more significant to hear the ideas you have about what you see in the map or read in the data.

A lot of people wanted the Chicago bike crash and injury data overlaid with bike counts data.

In 2009, Chicago Department of Transportation (CDOT) placed automatic bike counting equipment at many locations around the city. It uses pneumatic tubes to count the number of bicyclists (excludes cars) at that point in the street – it counts ALL trips, and cannot distinguish between people going to work or going to school. This is dissimilar from Census data which asks respondents to indicate how they go to work.

Well, good news for you! CDOT today released the bike counts report from data collected in 2009 (just in time). There has been overwhelming response about the bike crash map I published – this shows how rabid the public is for information on their environments (just yesterday someone told me that they switched bike routes based on the crash frequency they noticed on their original route).

The size of the blue dot indicates the bicycle mode share for that count location. Mode share calculated by adding bikes and cars and dividing by bikes.

Get the data

A photo of the EcoCounter counting machine in action on Milwaukee Avenue (this was taken during testing phase, where CDOT compared automatic and manual counts to determine the machine’s accuracy).

How to use this map:

  1. Find a blue dot (count location) in an area you’re interested in.
  2. Zoom into that blue dot.
  3. Click on the blue dot to get the number of bikes counted there.
  4. Then observe the number of purple dots (crashes) near that count location.

What do you see that’s interesting?

What else is coming?

Now let’s hope the Active Transportation Alliance and the Chicago Park District release their Lakefront Trail counts from summer 2010. CDOT may have conducted bicycle counts in 2010 as well – I hope we don’t have to wait as long for that data.

I hope to have a tutorial on how to use GeoCommons coming soon. You should bug me about it if I don’t post it within one week.

Photos of Chicago bike commuters by Joshua Koonce.

Bike crash map in the press

Thank you to the Bay Citizen, Gapers Block, and the Chicago Bicycle Advocate (lawyer Brendan Kevenides). They’ve all written about the bike crash map I produced using Google Fusion Tables. And WGN 720 AM interviewed me and aired it in April 2011.

View the map now. The map needs to be updated with injury severity, a field I mistakenly removed before uploading the data.

The Bay Citizen started this by creating their own map of bike crashes for San Francisco, albeit with more information. I had helped some UIC students obtain the data from the Illinois Department of Transportation for their GIS project and have a copy of it myself. I quickly edited it using uDig and threw it up online in an instant map created by Fusion Tables.

A guy rides his bicycle on the “hipster highway” (aka Milwaukee Avenue), the street with the most crashes, but also has the most people biking (in mode share and pure quantity).

Why did I make the map?

I made this project for two reasons: One is to continue practicing my GIS skills and to learn new software and new web applications. The second reason was to put the data out there. There’s a growing trend for governments to open up their databases, and your readers have probably seen DataSF.org’s App Showcase. But in Chicago, we’re not seeing this trend. Instead of data, we get a list of FOIA requests, or instead of searchable City Council meeting minutes, we get PDFs that link to other PDFs that you must first select from drop down boxes. But both of these are improvements from before.

I would love to help anyone else passionate about bicycling in Chicago to find ways to use this data or project to address problems. I think bicycling in Chicago is good for many people, but we can make it better and for more people.

Read the full interview.

Interview with Bay Citizen on bike crash map

Thank you, Tasmeen, for asking about my bike crash map that your newspaper inspired me to create.

Read the interview.

Read about the bike crash map for Chicago.

View the bike crash map for Chicago (2007-2009).

It’s not this sunny yet, but today it was 49°F in Chicago. This photo was taken on Milwaukee Avenue, where the most people bike, and where the most people have bike crashes.

Converting Google My Maps to KML and GPX

Convert your routes that you made in Google My Maps to GPX so that you can view them on Garmin GPS devices, or upload them to MapMyRide.

  1. Access your My Map. Your My Map must have lines or routes in it. It appears that a My Map with only points doesn’t convert correctly.
  2. Click on View in Google Earth. Your web browser will download a KML file. It may automatically open in Google Earth, but this is not necessary.
  3. Visit GPS Visualizer to convert your KML file to GPX
  4. Select GPX as your output.
  5. For the input, choose the KML file you just downloaded from Google My Maps.
  6. Click Convert. Your file will be uploaded and your GPX file will be presented for download on the next page.
  7. Download your GPX file from the link on the page.

You can now transfer the GPX file to your GPS device, or upload it to MapMyRide. I confirmed that MapMyRide successfully imports the Google My Map I converted following these instructions.